目的 探讨鼠神经生长因子(mNGF)联合神经节苷脂治疗缺氧缺血性脑病(HIE)的效果及对脑血流灌注、外周血S-100β、Caspase3和白介素-2受体(mIL-2R)表达的影响。方法 选取郑州大学附属郑州中心医院2017-03—2018-02治疗的100例HIE患儿,随机分为观察组与对照组各50例,对照组给予神经节苷脂治疗,观察组在对照组的基础上联合使用mNGF,比较2组临床疗效、脑血流灌注水平以及外周血S-100β、Caspase3和mIL-2R表达水平。结果 观察组临床有效率(90.00%)高于对照组(72.00%),差异有统计学意义(P<0.05);观察组治疗后颈内动脉收缩期流速(Vs)水平高于对照组,外周血管阻力(RI)水平较对照组低,差异有统计学意义(P<0.05);观察组治疗后S-100β、Caspase3水平低于对照组,外周血mIL-2R水平高于对照组,差异有统计学意义(P<0.05);2组治疗期间均未出现严重不良反应。结论 mNGF联合神经节苷脂治疗HIE,可有效改善患儿脑血流灌注水平以及外周血神经元蛋白指标,提高外周血中mIL-2R表达率,效果显著,安全性较高。
mNGF联合神经节苷脂治疗HIE对脑血流灌注及外周血S-100β Caspase3和mIL-2R表达的影响
张嘉雯
郑州大学附属郑州中心医院,河南郑州 450000
作者简介:张嘉雯,Email:zhangjiawen2012@163.com
【摘要】 目的 探讨鼠神经生长因子(mNGF)联合神经节苷脂治疗缺氧缺血性脑病(HIE)的效果及对脑血流灌注、外周血S-100β、Caspase3和白介素-2受体(mIL-2R)表达的影响。方法 选取郑州大学附属郑州中心医院2017-03—2018-02治疗的100例HIE患儿,随机分为观察组与对照组各50例,对照组给予神经节苷脂治疗,观察组在对照组的基础上联合使用mNGF,比较2组临床疗效、脑血流灌注水平以及外周血S-100β、Caspase3和mIL-2R表达水平。结果 观察组临床有效率(90.00%)高于对照组(72.00%),差异有统计学意义(P<0.05);观察组治疗后颈内动脉收缩期流速(Vs)水平高于对照组,外周血管阻力(RI)水平较对照组低,差异有统计学意义(P<0.05);观察组治疗后S-100β、Caspase3水平低于对照组,外周血mIL-2R水平高于对照组,差异有统计学意义(P<0.05);2组治疗期间均未出现严重不良反应。结论 mNGF联合神经节苷脂治疗HIE,可有效改善患儿脑血流灌注水平以及外周血神经元蛋白指标,提高外周血中mIL-2R表达率,效果显著,安全性较高。
【关键词】 鼠神经生长因子;神经节苷脂;缺氧缺血性脑病;脑血流灌注;小儿;外周血;S-100β;Caspase3;白介素-2受体
【中图分类号】 R748 【文献标识码】 A 【文章编号】 1673-5110(2018)24-2742-07 DOI:10.12083/SYSJ.2018.24.571
Effects of mNGF combined with gangliosides on children with HIE and its influence on cerebral blood flow perfusion and expression levels of peripheral blood S-100β,Caspase3 and mIL-2R
ZHANG Jiawen
Zhengzhou Central Hospital Affiliated to Zhengzhou University,Zhengzhou 450000,China
【Abstract】 Objective To explore the effects of mouse nerve growth factor (mNGF) combined with gangliosides in the treatment of children with hypoxic ischemic encephalopathy (HIE) and its influence on cerebral blood flow perfusion and expression levels of peripheral blood S-100β,Caspase3 and mIL-2R.Methods 100 children patients with HIE from March 2017 to February 2018 were selected and randomly divided into observation group and control group,with 50 cases in each group.Control group was given gangliosides for treatment,and observation group was combined with mNGF on the basis of control group.The clinical efficacy,cerebral blood flow perfusion level and expression levels of peripheral blood S-100β,Caspase3 and interleukin-2 receptor (mIL-2R) were compared between the two groups.Results The clinical effective rate in observation group was higher than that in control group (90.00% vs 72.00%) (P<0.05).The systolic velocity (Vs) of internal carotid artery in observation group after treatment was higher than that in control group,and the peripheral vascular resistance (RI) level was lower than that in control group (P<0.05).The levels of S-100β and Caspase3 in observation group after treatment were lower than those in control group,and the peripheral blood mIL-2R level was higher than that in control group (P<0.05).There were no serious adverse reactions during treatment in the two groups.Conclusion mNGF combined with gangliosides for children with HIE can effectively improve the cerebral blood flow perfusion level and peripheral blood neuronal proteins levels,and increase the expression of mIL-2R in peripheral blood,and it has significant effects and high safety.
【Key words】 Mouse nerve growth factor;Gangliosides;Hypoxic ischemic encephalopathy;Cerebral blood flow perfusion;Pediatric;Peripheral blood;S-100β;Caspase3;mIL-2R
缺氧缺血性脑病(HIE)是由于各种原因而导致的脑的缺氧缺血性损伤,新生儿多见,是新生儿神经系统致残的首要病因之一。HIE患儿临床表现为意识障碍、兴奋或抑制、肌张力及原始反射改变,严重者可出现昏迷、惊厥和颅内高压等,易导致神经系统发育迟缓或中枢神经后遗症[1-3]。神经节苷脂作为一种神经元鞘膜的营养因子,可使脑水肿减轻,对缺血性神经元损伤具有良好的保护作用。临床研究表明,单纯的神经苷脂可短期内改善神经功能障碍症状,但治疗后部分患儿惊厥和肌张力异常等症状仍然存在,不利于患儿预后[4-7]。鼠神经生长因子(mNGF)为神经细胞营养保护多肽分子,可提高神经细胞存活率,具有明显的趋化反应[8-14]。本研究联合应用mNGF与神经苷脂,并通过与单独神经苷脂治疗比较患儿临床脑血流灌注和神经因子改善情况,阐述联合用药价值。
1 资料与方法
1.1 一般资料 选取郑州大学附属郑州中心医院2017-03—2018-02治疗的100例HIE患儿,随机分为观察组与对照组各50例。对照组男28例,女22例;胎龄36~41(39.19±1.13)周;体质量2 925~3 731(3 468.86±76.83)g;病情严重程度:轻度14例,中度27例,重度9例。观察组男27例,女23例;胎龄37~42(39.26±1.18)周;体质量2 927~3 745(3 471.39±68.03)g;病情严重程度:轻度13例,中度28例,重度9例。2组一般资料比较差异无统计学意义(P>0.05),具有可比性。
1.2 纳入标准 (1)符合《儿科学》中缺氧缺血性脑疾病诊断标准;(2)通过头颅CT检查可发现高密度改变;(2)胎龄≥36周;(3)出生体质量≥2 500 g;(4)新生儿Apgar评分<7分;(5)经医院伦理委员会批准,患儿家属知情并同意。
1.3 排除标准 (1)合并宫内感染、免疫缺陷或先天性代谢疾病患儿;(2)入组前存在血制品及免疫抑制剂用药史;(3)合并脓毒症或全身炎症反应综合征;(4)合并脑出血、败血症以及肺炎等相关疾病;(5)对本研究所用药物禁忌者;(6)临床资料不全。
1.4 方法 2组患儿均进行常规综合治疗措施,给予低流量鼻导管或面罩吸氧,定时监测血糖水平,维持电解质的酸碱平衡,控制液体摄入量,纠正低血压,通过肌内注射苯巴比妥控制惊厥(厂家:天津金耀药业有限公司,批准文号:H12020381),剂量20 mg/kg,通过静滴15%~25%甘露醇降低颅内压(厂家:华润双鹤药业股份有限公司,批准文号:国药准字H11020861),剂量0.5 g/kg,滴注时间40~60 min。
1.4.1 对照组:在常规治疗的基础上给予单唾液酸四己糖神经苷脂钠注射液(厂家:哈尔滨医大药业股份有限公司,批准文号:国药准字H20060422),规格2 mL∶20 mg,剂量20 mg/次,1次/d,加入50 mL 10%葡糖糖注射液中静滴,10 d为1个疗程,共治疗2个疗程。
1.4.2 观察组:在对照组的基础上给予注射用mNGF(厂家:未名生物制药有限公司,批准文号:国药准字S20060052),规格18 μg/瓶,以2 mL氯化钠注射液溶解,肌内注射,18 μg/次,1次/d,10 d为1个疗程,共治疗2个疗程。
1.5 观察指标
1.5.1 2组临床疗效比较:参照中华医学会儿科分会制订的HIE患儿疗效标准。①显效:患儿精神恢复,哭声洪亮,面色红润,肌张力以及原始反射恢复正常,心率100~120次/分钟;②有效:患儿临床症状有所缓解,肌张力部分恢复正常,原始反射恢复,心率100~120次/min;③无效:患儿各项临床症状无改善甚至加重。
1.5.2 2组脑血流灌注指标比较:通过EUB-7000HV彩色多普勒超声诊断仪(厂家:日本日立公司),对大脑中央动脉中央支分别进行冠状和矢状面的扫描,比较2组颈内动脉收缩期流速(Vs)以及外周血管阻力(RI)水平。
1.5.3 2组神经元蛋白指标比较:于治疗前后采集肘静脉血2 mL,于室温下静置30 min,离心机离心10 min,转速设置为4 000 r/min,分离血清,置于-80 ℃超低温条件下保存,采用放射免疫试剂盒(北京中杉金桥生物技术有限公司),通过酶联免疫吸附法测定外周血S-100β、Caspase3表达水平。
1.5.4 2组静息期与诱导期mIL-2R水平测定:于治疗前后通过BSA法检测T细胞亚群膜白介素-2受体(mIL-2R)水平,试剂盒来自上海思创生化电子有限公司,分别测定静息期与诱导期mIL-2R阳性细胞率。
1.5.5 不良反应:观察2组的不良反应,并对其发生率进行对比。
1.6 统计学方法 分析数据采用SPSS 20.0统计学软件,卡方检验用来进行计数资料比较,行t检验进行计量资料比较,P<0.05提示差异有统计学意义。
2 结果
2.1 2组临床疗效比较 观察组临床有效率高于对照组,差异有统计学意义(P<0.05)。见表1。
2.2 2组脑血流灌注指标水平比较 2组治疗前脑血流灌注指标水平比较差异无统计学意义(P>0.05);2组治疗前Vs水平低于治疗后,且对照组低于观察组,差异有统计学意义(P<0.05);2组治疗后RI水平低于治疗前,且观察组低于对照组,差异有统计学意义(P<0.05)。见表2。
2.3 2组外周血神经元蛋白指标水平比较 2组治疗前外周血神经元蛋白指标水平比较差异无统计学意义(P>0.05);2组治疗后S-100β、Caspase3水平均明显低于治疗前,且对照组高于观察组,差异有统计学意义(P<0.05)。见表3。
2.4 2组静息期与诱导期mIL-2R水平比较 2组治疗前外周血mIL-2R水平比较差异无统计学意义(P>0.05);2组治疗后外周血静息期与诱导期mIL-2R水平均明显高于治疗前,且对照组低于观察组,差异有统计学意义(P<0.05)。见表4。
表1 2组临床疗效比较 [n(%)]
Table 1 Comparison of clinical effects of 2 groups [n(%)]
组别 |
n |
显效 |
有效 |
无效 |
总有效 |
观察组 |
50 |
23(46.00) |
22(44.00) |
5(10.00) |
45(90.00) |
对照组 |
50 |
8(16.00) |
28(56.00) |
14(28.00) |
36(72.00) |
χ2值 |
|
|
|
|
5.263 |
P值 |
|
|
|
|
0.022 |
表2 2组脑血流灌注指标水平比较 (x±s)
Table 2 Comparison of cerebral blood perfusion indicators in 2 groups (x±s)
组别 |
n |
Vs(cm/s) |
|
RI |
治疗前 |
治疗后 |
|
治疗前 |
治疗后 |
观察组 |
50 |
8.16±1.45 |
13.76±1.52 |
|
0.85±0.11 |
0.34±0.07 |
对照组 |
50 |
8.20±1.37 |
10.61±1.88 |
|
0.84±0.20 |
0.62±0.11 |
t值 |
|
0.142 |
9.213 |
|
0.31 |
15.185 |
P值 |
|
0.888 |
<0.01 |
|
0.757 |
<0.01 |
表3 2组外周血神经元蛋白指标水平比较 (x±s,μg/L)
Table 3 Comparison of neuronal protein levels of peripheral blood in 2 groups (x±s,μg/L)
组别 |
n |
S-100β |
|
Caspase3 |
治疗前 |
治疗后 |
|
治疗前 |
治疗后 |
观察组 |
50 |
9.12±1.68 |
4.02±0.81 |
|
6.14±1.32 |
3.30±0.68 |
对照组 |
50 |
9.16±1.60 |
5.39±1.12 |
|
6.17±1.14 |
4.66±0.91 |
t值 |
|
0.122 |
7.009 |
|
0.122 |
8.465 |
P值 |
|
0.903 |
<0.01 |
|
0.903 |
<0.01 |
表4 2组外周血静息期与诱导期mIL-2R水平比较 (x±s,%)
Table 4 Comparison of mIL-2R levels between the resting and induction phases of peripheral blood in the 2 groups (x±s,%)
组别 |
n |
静息期 |
|
诱导期 |
治疗前 |
治疗后 |
|
治疗前 |
治疗后 |
观察组 |
50 |
3.57±0.76 |
4.45±0.85 |
|
20.12±2.61 |
24.85±2.45 |
对照组 |
50 |
3.55±0.62 |
4.01±0.96 |
|
20.09±2.79 |
22.76±1.95 |
t值 |
|
0.144 |
2.426 |
|
0.056 |
4.72 |
P值 |
|
0.886 |
0.017 |
|
0.956 |
<0.01 |
2.5 2组不良反应比较 2组治疗期间均未出现严重不良反应,用药安全性较高。
3 讨论
新生儿HIE多是因围生期窒息导致缺氧、缺血,脑水肿及神经元坏死系缺氧所致;脑梗死及白质软化系缺血所致,如何改善患儿临床不良症状,降低后遗症是临床上治疗HIE的关键[15-20]。
神经节苷脂通过清除中枢神经系统异常增多所致的氧自由基,使神经细胞膜的损伤程度有效降低,同时血-脑脊液屏障可被神经节苷脂迅速通过,到达患儿神经损伤区域,蛋白激酶C移位过程被抑制,谷氨酸造成的神经元兴奋性神经毒性的目的可以降低甚至完全消除[21-27]。然而临床上单用神经苷脂治疗HIE,在改善惊厥症状,恢复肌张力和原始反射功能方面效果有限,达不到理想疗效[28-32]。mNGF作为神经细胞营养保护多肽分子,神经细胞突起伸长能力得以恢复,感觉和交感细胞的分化、成熟得到促进,交感神经元功能得以发挥,神经细胞存活率得到提高,同时神经元突起向浓度较高的区域生长被mNGF诱导,具有趋化能力,有利于细胞内酶活性的提高,刺激Ca2+向细胞外释放,延缓胆碱乙酰转移酶和乙酰胆碱酯酶活性降低进程,增强机体自由基清除的活力,与神经节苷脂合用,发挥协同疗效,改善临床症状[33-38]。
本研究对照组临床治疗有效率低于观察组,联合用药效果显著,与相关研究[39-41]基本一致。联合用药在改善患儿脑血流灌注水平方面具有明显的优势,观察组Vs水平高于对照组,RI水平低于对照组前,提示联合用药营养神经方案治疗缺血缺氧性脑病对减轻神经损伤症状是有利的,使患儿病情恢复加快,血流灌注和神经行为得到改善,有明显优势。研究[42-44]发现,mNGF联合神经节苷脂治疗HIE可有效改善外周血神经元蛋白指标水平。
S-100β是一种反映脑损伤的血清蛋白,具有广泛的生物活性,在细胞增生、分化、凋亡过程以及基因的表达过程中具有重要作用,正常情况下不能通过血-脑屏障进入血液[45-47]。作为神经元细胞凋亡蛋白的Caspase3,可影响缺氧缺血后细胞凋亡信号传导途径,是细胞杀伤机制中的重要组成部分[48-50]。本研究观察组治疗后S-100β、Caspase3水平均较治疗前显著降低,且效果优于对照组。mIL-2R为T细胞活化的重要标志,在T细胞发挥生物学效应上具有关键作用,能够反映T细胞的激活过程以及机体的免疫状态,当T细胞功能受损时,表达率明显降低。本研究中2组治疗后外周血静息期与诱导期mIL-2R水平均较治疗前明显升高,且观察组效果更为明显,提示观察组患儿免疫功能紊乱得到有效纠正,降低了免疫损伤。本研究中无1例出现严重不良反应,提示本研究用药方案安全性较高。
mNGF联合神经节苷脂治疗HIE,可有效改善患儿脑血流灌注水平以及外周血神经元蛋白指标水平,提高外周血中mIL-2R表达率,效果显著,安全性较高。
4 参考文献
[1] 李爱丽.新生儿缺氧缺血性脑病脑动脉血流动力学变化及对预后的影响[J].中国实用神经疾病杂志,2018,21(10):1 088-1 092.
[2] DIAZ J,ABIOLA S,KIM N,et al.Therapeutic Hypothermia Provides Variable Protection against Behavioral Deficits after Neonatal Hypoxia-Ischemia:A Potential Role for Brain-Derived Neurotrophic Factor[J].Dev Neurosci,2017,39(1/4):257-272.DOI:10.1159/000454949.
[3] LEE I S,KOO K Y,JUNG K,et al.Neurogenin-2-transduced human neural progenitor cells attenuate neonatalhypoxic-ischemic brain injury[J].Transl Res,2017,183:121-136.e9.DOI:10.1016/j.trsl.2016.12.010.
[4] CIKLA U,CHANANA V,KINTNER D B,et al.ERα Signaling Is Required for TrkB-Mediated Hippoca-mpal Neuroprotection in FemaleNeonatal Mice after Hypoxic Ischemic Encephalopathy(1,2,3)[J].eNeuro,2016,3(1).pii:ENEURO.0025-15.2015.DOI:10.1523/ENEURO.0025-15.2015.
[5] BUONO K D,GOODUS M T,GUARDIA CLAUSI M,et al.Mechanisms of mouse neural precursor expansion after neonatal hypoxia-ischemia[J].J Neurosci,2015,35(23):8 855-8 865.DOI:10.1523/JNEUROSCI.2868-12.2015.
[6] CHEN LX,MA SM,ZHANG P,et al.Neuroprotective effects of oligodendrocyte progenitor cell transplantationin premature rat brain following hypoxic-ischemic injury[J].PLoS One,2015,10(3):e0115997.DOI:10.1371/journal.pone.0115997.
[7] DONEGA V,NIJBOER CH,VAN TILBORG G,et al.Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury[J].Exp Neurol,2014,261:53-64.DOI:10.1016/j.expneurol.2014.06.009.
[8] ROSENBLUM S,SMITH T N,WANG N,et al.BDNFPretreatment of Human Embryonic-Derived Neural Stem Cells Improves Cell Survival and Functional Recovery After Transplantation in Hypoxic-Ischemic Stroke[J].Cell Transplant,2015,24(12):2 449-2 461.DOI:10.3727/096368914X679354.
[9] CHAVEZ-VALDEZ R,MARTIN L J,RAZDAN S,et al.Sexual dimorphism in BDNF signaling after neonatal hypoxia-ischemia and treatment with necrostatin-1[J].Neuroscience,2014,260:106-119.DOI:10.1016/j.neuroscience.2013.12.023.
[10] YIN X,MENG F,WEI W,et al.Role of mouse nerve growth factor in neural recovery following hypoxic-ischemic brain damage[J].Int JClin Exp Med,2013,6(10):951-955.
[11] VAN VELTHOVEN C T,BRACCIOLI L,WILLEMEN H L,et al.Therapeutic potential of genetically modified mesenchymal stem cells after neonatal hypoxic-ischemic brain damage[J].Mol Ther,2014,22(3):645-654.DOI:10.1038/mt.2013.260.
[12] CHIARETTI A,FALSINI B,ALOE L,et al.Neuroprotective role of nerve growth factor in hypoxic ischemic injury.From brainto skin[J].Arch Ital Biol,2011,149(2):275-282.DOI:10.4449/aib.v149i2.1364.
[13] WEI L X,CAO Y T,LIU H Q.Effects of neural growth factor and hyperbaric oxygen on nerve regeneration after hypoxic ischemic brain injury in newborn mice[J].Zhonghua Er Ke Za Zhi,2008,46(9):714-716.
[14] CHIARETTI A,ANTONELLI A,GENOVESE O,et al.Intraventricular nerve growth factor infusion improves cerebral blood flow and stimulates doublecortin expression in two infants with hypoxic-ischemic brain injury[J].Neurol Res,2008,30(3):223-228.DOI:10.1179/016164107X247948.
[15] PARK K I,HIMES B T,STIEG P E,et al.Neural-stem cells may be uniquely suited for combined gene therapy and cell replacement:Evidence from engraftment of Neurotrophin-3-expressing stem cells inhypoxic-ischemic brain injury[J].Exp Neurol,2006,199(1):179-190.
[16] CHIARETTI A,GENOVESE O,RICCARDI R,et al.Intraventricular nerve growth factor infusion:a possible treatment for neurological deficits following hypoxic-ischemic brain injury in infants[J].Neurol Res,2005,27(7):741-746.
[17] WAINWRIGHT M S,CRAFT J M,GRIFFIN W S,et al.Increased susceptibility of S100B transgenic mice toperinatal hypoxia-ischemia[J].Ann Neurol,2004,56(1):61-67.
[18] SHENG L,LI Z.Adjuvant treatment with monosialoganglioside may improve neurological outcomes in neonatal hypoxic-ischemic encephalopathy:A meta-analysis of randomized controlled trials[J].PLoS One,2017,12(8):e0183490.DOI:10.1371/journal.pone.0183490.
[19] HU W,CHAO Y,GENG X.Neuroprotective strategies for patients with acute myocardial infarction combined with hypoxic ischemic encephalopathy in the ICU[J].Hellenic J Cardiol,2017,58(6):427-431.DOI:10.1016/j.hjc.2016.12.006.
[20] TANG B,WANG D,LI M,et al.An in vivo study of hypoxia-inducible factor-1α signaling in ginsenoside Rg1-mediated brain repair after hypoxia/ischemia brain injury[J].Pediatr Res,2017,81(1/1):120-126.DOI:10.1038/pr.2016.178.
[21] ZHU X Y,YE M Y,ZHANG A M,et al.Influence of one-year neurologic outcome of treatment on newborns with moderate and severe hypoxic-ischemic encephalopathy by rhuEP0 combined with ganglioside (GM1)[J].Eur Rev Med Pharmacol Sci,2015,9(20):3 955-3 960.
[22] ZHANG X,ZHANG Q,LI W,et al.Therapeutic effect of human umbilical cord mesenchymal stem cells on neonatal rat hypoxic-ischemic encephalopathy[J].J Neurosci Res,2014,92(1):35-45.DOI:10.1002/jnr.23304.
[23] RONG X,ZHOU W,XIAO-WEN C,et al.Ganglioside GM1 reduces white matter damage in neonatal rats[J].Acta Neurobiol Exp (Wars),2013,73(3):379-386.
[24] ZHANG Y P,HUANG Q L,ZHAO C M,et al.GM1 improves neurofascin155 association with lipid rafts and prevents rat brain myelin injury after hypoxia-ischemia[J].Braz J Med Biol Res,2011,44(6):553-561.
[25] XIAO N,LI S,ZHANG X,et al.Effect of ephedrine on neuronal plasticity of hypoxic-ischemic brain damage in neonatal rats[J].Neurosci Lett,2008,435(2):99-102.DOI:10.1016/j.neulet.2008.02.058.
[26] RAMIREZ M R,MURARO F,ZYLBERSZTEJN D S,et al.Neonatal hypoxia-ischemia reduces ganglioside,phospholipid and cholesterol contents in the rat hippocampus[J].Neurosci Res,2003,46(3):339-347.
[27] TRINDADE V M,DANIOTTI J L,RAIMONDI L,et al.Effects of neonatal hypoxia/ischemia on ganglioside expression in the rat hippocampus[J].Neurochem Res,2001,26(6):591-597.
[28] GRANDVUILLEMIN I,GARRIGUE P,RAMDANI A,et al.Long-Term Recovery After Endothelial Colony-Forming Cells or Human Umbilical Cord Blood Cells Administration in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy[J].Stem Cells Transl Med,2017,6(11):1 987-1 996.DOI:10.1002/sctm.17-0074.
[29] PEEPLES E S,EZEOKEKE C K,JUUL S E,et al.Evaluating a Targeted Bedside Measure of Cerebral Perfusion in a Nonhuman Primate Model of Neonatal Hypoxic-Ischemic Encephalopathy[J].J Ultrasound Med,2018,37(4):913-920.DOI:10.1002/jum.14426.
[30] TIAN F,TARUMI T,LIU H,et al.Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic-ischemic encephalopathy[J].Neuroimage Clin,2016,11:124-132.DOI:10.1016/j.nicl.2016.01.020.
[31] NAKAMURA M,JINNAI W,HAMANO S,et al.Cerebral blood volume measurement using near-infrared time-resolved spectroscopy and histopathological evaluation after hypoxic-ischemic insult in newborn piglets[J].Int J Dev Neurosci,2015,42:1-9.DOI:10.1016/j.ijdevneu.2015.02.009.
[32] WINTERMARK P,HANSEN A,WARFIELD S K,et al.Near-infrared spectroscopy versus magnetic reson-ance imaging to study brain perfusion innewborns with hypoxic-ischemic encephalopathy treated with hypothermia[J].Neuroimage,2014,85 Pt 1:287-293.DOI:10.1016/j.neuroimage.2013.04.072.
[33] MASSARO A N,BOUYSSI-KOBAR M,CHANG T,et al.Brain perfusion inencephalopathic newborns after therapeutic hypothermia[J].AJNR Am J Neuroradiol,2013,34(8):1649-1 655.DOI:10.3174/ajnr.A3422.
[34] OHSHIMA M,TSUJI M,TAGUCHI A,et al.Cerebral blood flow during reperfusion predicts later brain damage in a mouse and a rat model of neonatalhypoxic-ischemic encephalopathy[J].Exp Neurol,2012,233(1):481-489.DOI:10.1016/j.expneurol.2011.11.025.
[35] SÁNCHEZ FERNÁNDEZ I,MORALES-QUEZADA J L,LAW S,et al.Prognostic Value of Brain Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy:A Meta-analysis[J].J Child Neurol,2017,32(13):1 065-1 073.DOI:10.1177/0883073817726681.
[36] CHIANG M C,JONG Y J,LIN C H.Therapeutic hypothermia for neonates with hypoxic ischemic encephalopathy[J].Pediatr Neonatol,2017,58(6):475-483.DOI:10.1016/j.pedneo.2016.11.001.
[37] FITZGERALD M P,KESSLER S K,ABEND N S.Early discontinuation of antiseizure medications in neonates with hypoxic-ischemic encephalopathy[J].Epilepsia,2017,58(6):1 047-1 053.DOI:10.1111/epi.13745.
[38] ALSINA M,MARTN-ANCEL A,ALARCON-ALLEN A,et al.The Severity of Hypoxic-Ischemic Encephalopathy Correlates With Multiple Organ Dysfunction in the Hypothermia Era[J].Pediatr Crit Care Med,2017,18(3):234-240.DOI:10.1097/PCC.0000000000001068.
[39] VENKATESAN C,YOUNG S,SCHAPIRO M,et al.Levetiracetam for the Treatment of Seizures in Neonatal Hypoxic Ischemic Encephalopathy[J].J Child Neurol,2017,32(2):210-214.DOI:10.1177/0883073816678102.
[40] NATARAJAN G,PAPPAS A,SHANKARAN S.Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE)[J].Semin Perinatol,2016,40(8):549-555.DOI:10.1053/j.semperi.2016.09.007.
[41] YILDIZ E P,EKICI B,TATLI B.Neonatal hypoxic ischemic encephalopathy:anupdate on disease pathoge-nesis and treatment[J].Expert Rev Neurother,2017,17(5):449-459.DOI:10.1080/14737175.2017.1259567.
[42] GIESINGER R E,BAILEY L J,DESHPANDE P,et al.Hypoxic-Ischemic Encephalopathy and Therapeutic Hypothermia:The Hemodynamic Perspective[J].J Pediatr,2017,180:22.e2-30.e2.DOI:10.1016/j.jpeds.2016.09.009.
[43] SHANKARAN S,NATARAJAN G,CHALAK L,et al.Hypothermia for neonatal hypoxic-ischemic encephalopathy:NICHD Neonatal Research Network contribution to the field[J].Semin Perinatol,2016,40(6):385-390.DOI:10.1053/j.semperi.2016.05.009.
[44] WU Y W,MATHUR A M,CHANG T,et al.High-Dose Erythropoietin and Hypothermia for Hypoxic-Ischemic Encephalopathy:A Phase II Trial[J].Pediatrics,2016,137(6).pii:e20160191.DOI:10.1542/peds.2016-0191.
[45] BELL S G.Hypoxic-Ischemic Encephalopathy and Serum Magnesium Monitoring and Maintenance[J].Neonatal Netw,2016,35(3):159-163.DOI:10.1891/0730-0832.35.3.159.
[46] DIXON B J,REIS C,HO W M,et al.Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy[J].Int J Mol Sci,2015,16(9):22 368-22 401.DOI:10.3390/ijms160922368.
[47] SILVEIRA R C,PROCIANOY R S.Hypothermia therapy for newborns with hypoxic ischemic encephalopathy[J].JPediatr (Rio J),2015,91(6 Suppl 1):S78-S83.DOI:10.1016/j.jped.2015.07.004.
[48] LV H,WANG Q,WU S,et al.Neonatal hypoxicis-chemic encephalopathy-related biomarkers in serum and cerebrospinal fluid[J].Clin Chim Acta,2015,450:282-297.DOI:10.1016/j.cca.2015.08.021.
[49] DOUGLAS-ESCOBAR M,WEISS M D.Hypoxic-ischemic encephalopathy:a review for the clinician[J].JAMA Pediatr,2015,169(4):397-403.DOI:10.1001/jamapediatrics.2014.3269.
[50] PAUL S P,ABDELRHIM H,HEEP A.Management of Hypoxic-ischemic Encephalopathy[J].Indian J Pediatr,2015,82(6):493-496.DOI:10.1007/s12098-014-1592-3.
(收稿2018-10-19 修回2018-11-28)
本文责编:夏保军
本文引用信息:张嘉雯.mNGF联合神经节苷脂治疗HIE对脑血流灌注及外周血S-100β Caspase3和mIL-2R表达的影响[J].中国实用神经疾病杂志,2018,21(24):2742-2748.DOI:10.12083/SYSJ.2018.24.571
Reference information:ZHANG Jiawen.Effects of mNGF combined with gangliosides on children with HIE and its influence on cerebral blood flow perfusion and expression levels of peripheral blood S-100β,Caspase3 and mIL-2R[J].Chinese Journal of Practical Nervous Diseases,2018,21(24):2742-2748.DOI:10.12083/SYSJ.2018.24.571