目的 探讨脑脊液α-突触核蛋白测定和SWI在早期帕金森病(Parkinson’s disease,PD)诊断中的价值。方法 收集郑州大学第一附属医院2015-08—2017-12确诊的PD患者,根据H-Y分级分为早期PD组和中晚期PD组,招募同一时期内年龄及性别与PD组相匹配的健康志愿者,采用酶联免疫吸附测定试剂盒检测脑脊液α-突触核蛋白,所有患者及对照组同时行头颅横断位T1WI、T2WI和SWI成像检查。结果 PD组脑脊液中α-突触核蛋白水平低于对照组;不同分期PD比较,中晚期PD组脑脊液中α-突触核蛋白水平低于早期PD组,差异有统计学意义(P<0.01)。头颅SWI分析显示,PD组与对照组的脑铁沉积比较,在苍白球、尾状核头和黑质区差异有统计学意义(P<0.05),早期PD组与中晚期PD组在相同部位铁沉积比较,差异无统计学意义(P>0.05);在红核和壳核区域,PD组与对照组铁沉积比较,差异无统计学意义(P>0.05),早期PD组与中晚期PD组铁沉积比较,差异无统计学意义(P>0.05)。结论 脑脊液α-突触核蛋白是PD早期病理改变的重要生物学指标。SWI通过检测脑内异常铁沉积,可用于协同诊断PD。
脑脊液α-突触核蛋白和SWI在早期帕金森病诊断中的价值
焦淑洁 刘亚玲 朱红灿 滕军放
郑州大学第一附属医院神经内科,河南郑州 450052
基金项目:河南省医学科技攻关计划普通项目(编号:201503050)
作者简介:焦淑洁,Email:529765445@qq.com
【摘要】 目的 探讨脑脊液α-突触核蛋白测定和SWI在早期帕金森病(Parkinson’s disease,PD)诊断中的价值。方法 收集郑州大学第一附属医院2015-08—2017-12确诊的PD患者,根据H-Y分级分为早期PD组和中晚期PD组,招募同一时期内年龄及性别与PD组相匹配的健康志愿者,采用酶联免疫吸附测定试剂盒检测脑脊液α-突触核蛋白,所有患者及对照组同时行头颅横断位T1WI、T2WI和SWI成像检查。结果 PD组脑脊液中α-突触核蛋白水平低于对照组;不同分期PD比较,中晚期PD组脑脊液中α-突触核蛋白水平低于早期PD组,差异有统计学意义(P<0.01)。头颅SWI分析显示,PD组与对照组的脑铁沉积比较,在苍白球、尾状核头和黑质区差异有统计学意义(P<0.05),早期PD组与中晚期PD组在相同部位铁沉积比较,差异无统计学意义(P>0.05);在红核和壳核区域,PD组与对照组铁沉积比较,差异无统计学意义(P>0.05),早期PD组与中晚期PD组铁沉积比较,差异无统计学意义(P>0.05)。结论 脑脊液α-突触核蛋白是PD早期病理改变的重要生物学指标。SWI通过检测脑内异常铁沉积,可用于协同诊断PD。
【关键词】 帕金森病;α-突触核蛋白;磁敏感加权成像;弥散张量成像;早期诊断;铁沉积;脑脊液
【中图分类号】 R743.33 【文献标识码】 A 【文章编号】 1673-5110(2019)03-0246-07 DOI:10.12083/SYSJ.2019.03.048
The effect of α-synuclein in cerebrospinal fluid and SWI in early Parkinson’s disease
JIAO Shujie,LIU Yaling,ZHU Hongcan,TENG Junfang
Department of Neurology,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China
【Abstract】 Objective To investigate the levels ofα-synuclein in cerebrospinal fluid andSWI in patients with early-stage Parkinson’s disease.Methods SWI and cerebrospinal fluid α-synuclein of patients with the group of early-stage PD,the group of middle-and late-stage PD and the group of healthy controls were obtained from Department of Neurology in the First Affiliated Hospital of Zhengzhou University.Results The levels of α-synucleinin cerebrospinal fluid of patients with early-stage PD were significant decreased than the control group(P<0.01).The levels of α-synucleinin cerebrospinal fluid of patients with middle-and late-stage PDwere significant decreased thanthe group of early-stage PD (P<0.01).The phase value of CAU,Snr and PUT in PD group were significantly lower than that in the control group (P<0.05).The phase value of RN and GP had no significant difference between the groups (P>0.05).Conclusion The levels of α-synuclein in cerebrospinal fluid is important to early-stage Parkinson's disease.SWI maybe a new method for the study of early diagnosis in PD.
【Key words】 Parkinson's disease;α-synuclein;Susceptibility weighted imaging(SWI);Diffusion Tensor Imaging(DTI);Early diagnosis;Iron deposition;Cerebrospinal fluid
帕金森病(Parkinson’s disease,PD)是一种以黑质致密部多巴胺能神经元和蓝斑部去甲肾上腺素能神经元丢失及路易小体形成为特征的神经变性疾病。目前,PD的诊断主要依赖患者的病史、临床表现及体格检查,不容易早期诊断[1-5]。在帕金森病以往的神经生化和组织生化研究中发现,处于病变过程的不同时期,其主要病变部位的化学成分变化不同[4,6-12]。因此,如何在多巴胺能神经元尚存活时,即帕金森病的早期能够明确诊断,已成为目前帕金森病研究的热点之一[5-8,13-22]。近年来随着磁共振成像技术的发展,弥散张量成像(diffusion tensor imaging,DTI)、磁敏感加权成像(susceptibility weighted imaging,SWI)等新技术应用于临床,有可能发现帕金森病患者早期影像学改变[4,9-12,23-28],从而有助于帕金森病患者的早期诊断。
1 对象与方法
1.1 对象 (1)PD组:收集郑州大学第一附属医院2015-08—2017-12确诊的PD 患者,男32例,女20例,年龄53~72(59.38±7.99)岁。入组标准:(1)符合2015-10国际运动障碍协会(MDS)公布的帕金森病最新临床诊断标准;(2)能够配合影像学磁共振检查;(3)能够配合各种量表评估。排除标准:(1)有明确脑血管病、感染中毒史、外伤及特殊药物服用史,由上述原因所致的帕金森综合征;(2)有小脑损害症状及体征、锥体束征、眼球运动障碍等神经系统定位体征,或明确诊断为帕金森叠加综合征;(3)严重认知功能障碍,而锥体外系症状不典型者;(4)合并严重内科疾患,包括心功能不全、肝肾衰竭等;(5)有精神疾病史,长期或滥用抗精神病药物。记录所有PD患者的病程、UDPRS-Ⅲ评分、根据Hoehn&Yahr分级,PD患者又分为早期30例,中期10例,晚期12例。由两名经验丰富的神经内科副主任医师以上职称医生临床诊断。(2)健康对照组:同一时期内招募年龄及性别与PD组相匹配的健康志愿者47例,无神经系统症状及定位体征,无其他神经系统疾病史,无严重内科疾患,无精神疾病史,头颅MRI检查无异常。
1.2 脑脊液α-突触核蛋白检测 征得所有入组患者知情同意后,对其行腰椎穿刺术留取脑脊液标本,收集于聚丙烯管中,提取10 min内以2 000 g离心10 min,随后将上清液储存于-80 ℃。采用酶联免疫吸附测定(enzyme-linked immuno sorbent assay,ELISA)试剂盒检测脑脊液α-突触核蛋白。
1.3 MRI扫描 所有患者及健康对照组均选用Simens 3.0T磁共振成像系统进行图像采集,采用20-通道头颈联合线圈。检查时头部给予泡沫垫固定,以尽量减少运动伪影。所有入组患者及健康对照组均同时行头颅横断位T1WI、T2WI和SWI成像检查。经T1WI、T2WI序列成像检查发现颅内异常者排除出本研究。具体扫描参数:T1WI:TR/TE=2 000 ms/9 ms,slice thickness 6 mm,slice gap 1.2 mm,FOV 240 mm×240 mm,矩阵 320×320;T2WI:TR/TE=5 000 ms/117 ms,slice thickness 6 mm,slice gap 1.2 mm,FOV 240 mm×240 mm,矩阵320×320;SWI:TR/TE=27 ms/20 ms,slice thickness 1.5 mm,slice gap 0.3 mm,FOV 220 mm×220 mm,矩阵256×256。
1.3.1 常规MRI图像评估:所有MRI图像均由两名富有经验并且互不知情的影像科医生独立阅片。
1.3.2 图像处理及评价指标:在SWI校正相位图上以镜像对称方式选择感兴趣区(苍白球内侧部、尾状核、黑质等),由两位经验丰富的影像科医师各自完成对核团的辨认,并分别测量其相位值。每位医师对其所选的感兴趣区测量3次,取3次的平均值作为最终测量值。
1.4 统计学分析 采用SPSS 20.0统计软件进行数据分析,PD组与对照组不同部位比较采用两独立样本t检验,组间比较采用方差分析,P<0.05为差异有统计学意义。
2 结果
2.1 研究对象一般资料 PD组与健康对照组一般资料比较采用χ2检验,差异无统计学意义(P>0.05)。见表1。
2.2 PD组与健康对照组脑脊液α-突触核蛋白比较 采用ELISA方法检测,PD组脑脊液中α-突触核蛋白水平低于对照组,中晚期PD组脑脊液中α-突触核蛋白水平低于早期PD组,差异有统计学意义(P<0.01)。见表2。
2.3 SWI结果分析 SWI图像分析发现,由于不同核团铁沉积量不同,导致信号强度明显不同。健康对照组基底节区及中脑黑质、红核的校正相位图,各核团形态饱满,而PD组与对照组比较,灰质核团信号明显降低,提示有异常铁沉积(图1)。
通过测定PD组与对照组组各感兴趣区相位值发现,PD组均有所升高,提示有较多的铁沉积。PD组与健康对照组的苍白球、尾状核头和黑质脑铁沉积比较,差异有统计学意义(P<0.05),而早期PD组与中晚期PD组比较差异无统计学意义(P>0.05);双侧壳核和红核铁沉积比较,PD组与对照组差异有统计学意义(P<0.05),早期PD组与中晚期PD组各感兴趣区铁沉积差异无统计学意义(P>0.05)。见表3。
表1 PD组与健康对照组一般情况比较
Table 1 Comparison between PD group and healthy control group
组别 |
n |
性别(男/女) |
年龄/岁 |
UPDRS-III |
Hoehn-Yahr |
早期PD组 |
32 |
12月18日 |
59.38±7.99 |
10.92±4.78 |
1.5±0.25 |
中晚期PD组 |
22 |
8月14日 |
61.26±9.33 |
17.81±12.24 |
3.8±0.5 |
对照组 |
47 |
28/19 |
60.19±11.04 |
- |
- |
P值 |
|
0.571 |
0.482 |
0.036 |
0.018 |
表2 PD组与健康对照组脑脊液α-突触核蛋白测定 (x±s,pg/mL)
Table 2 Determination of cerebrospinal fluid α-synuclein in PD group and healthy control group (x±s,pg/mL)
组别 |
脑脊液α-突触核蛋白 |
早期PD组 |
1 803.21±627.18* |
中晚期PD组 |
1 537.05±794.15#* |
对照组 |
2 057.33±893.95 |
注:与对照组相比,*P<0.01;与早期PD组相比,#P<0.01
表3 PD各组别及正常对照组各感兴趣区平均相位值比较 (x±s)
Table 3 Average phase values of each region of interest in each group of PD and normal control group (x±s)
组别 |
尾状核 |
壳核 |
苍白球 |
黑质 |
红核 |
早期PD组 |
-0.065±0.013* |
-0.074±0.037※ |
-0.085±0.047* |
-0.109±0.013* |
-0.093±0.018※ |
中晚期PD组 |
-0.069±0.017* |
-0.078±0.034* |
-0.090±0.430* |
-0.130±0.016* |
-0.095±0.019* |
对照组 |
-0.059±0.010 |
-0.072±0.027 |
-0.075±0.029 |
-0.101±0.015 |
-0.090±0.011 |
注:与对照组相比,*P<0.05,※P>0.05;与早期PD组相比,*P>0.05
图1 A:对照组SWI中脑黑质红核;B:PD组SWI中脑黑质红核
Figure 1 A:The substantia nigra red nucleus of SWI in the control group;B:Brain substantia nigra of SWI in the PD group
3 讨论
一直以来,脑组织的黑质多巴胺能神经元变性缺失,残存的神经元出现路易小体,是确诊帕金森病的金标准[29-35]。组织病理学研究显示,α-突触核蛋白是路易小体的主要成分,α-突触核蛋白是由140个氨基酸组成的小分子蛋白质,正常生理情况下形成稳定的α螺旋结构[36-44]。帕金森病患者神经元胞质内线粒体功能缺陷、氧化应激,α-突触核蛋白突变破坏形成β折叠,发生异常聚集、沉积,并产生具有神经毒性的寡聚体,发生神经变性及功能失调,导致帕金森病的发生[13-16,45-52]。因此,若在外周血、脑脊液等体液中检测到α-突触核蛋白,可能为早期诊断帕金森病提供重要线索,是目前帕金森病研究热点之一[17-18,53-66]。本研究显示,PD患者脑脊液α-突触核蛋白含量明显低于健康对照组(P<0.01),中晚期PD组与早期PD相比,α-突触核蛋白含量亦明显减低(P<0.01),与ABBASI等[19]研究相符。α-突触核蛋白聚集具有神经毒性作用,同时也影响突触功能和信号传递,在PD的发病和发展过程中发挥作用[20-24,67-72]。本研究提示,PD不同阶段患者脑脊液α-突触核蛋白含量不同,为早期诊断PD提供了新的思路。
帕金森病是一种神经变性疾病,黑质是帕金森病神经元变性的关键部位,尸检及组织病理学研究均发现帕金森病患者黑质内有铁异常沉积,提示铁异常沉积可能参与了帕金森病的发病过程[73-80]。磁敏感加权成像通过测量相位值间接反映了脑铁含量,因此可以进一步研究铁异常沉积在帕金森病中的作用[25-29]。本研究中PD组患者大部分感兴趣区的相位值均低于健康对照组,说明PD组中多个部位均有铁的异常沉积,在黑质、苍白球和尾状核差异有统计学意义(P<0.05)。而依据H-Y分级将PD组分为早期、中晚期,统计学分析提示2组相位值差异无统计学意义(P>0.05),说明SWI通过CP值反映脑内异常铁沉积,可用于PD的诊断[30-34],有助于PD发生机制的研究,但对于疾病分期意义不大[35-39]。
由于帕金森病的复杂性和患者所处的环境不同,选用单一标记物或某种影像学检查很难明确诊断和监测疾病发展的全过程。因此,在帕金森病的不同阶段,采用多种检测方法相结合的方式(如疾病早期影像学检查与生物学指标相结合)[40-45],有助于明确诊断帕金森病和动态监测疾病的进程。
4 参考文献
[1] BUDDHALA C,CAMPBELL M C,PERLMUTTER J S.Correlation betweendecreased CSF α-synuclein and Ab1e42 in Parkinson’s disease[J].Neurobiol Aging,2015,36:476-484.
[2] CAMPBELL M C,KOLLER J M,SNYDER A Z,et al.CSF proteinsand resting-state functional connectivity in Parkinson disease[J].Neurology,2015,84:2 413-2 422.
[3] GAO R,ZHANG G,CHEN X,et al.Biomarkers and its associations with 18F-AV133 cerebral VMAT2binding in Parkinson’s disease—a preliminary report[J].PLoS One,2016,11:e0164762.
[4] ROSSI ME,RUOTTINEN H,SAUNAMKI T,et al.Imaging brain iron and diffusion patterns:a follow-up study of Parkinson's disease in the initial stages[J].Acad Radiol,2014,21(1):64-71.
[5] SCHWARZ S T,AFZAL M,MORGAN P S,et al.The ‘swallow tail’ appearanceof the healthy nigrosome:a new accurate test of Parkinson’s disease-a case-control and retrospective cross-sectional MRI study at3T[J].PLoS One,2014,9:e93814.
[6] TESSITORE A,GIORDANO A,RUSSO A,et al.Structural connectivity in Parkinson’s disease[J].Parkinsonism Relat Disord,2016,22(Suppl 1):S56-S59.
[7] BERARDELLI A,WENNING G K,ANTONINI A,et al.EFNS/MDS-ES/ENS[corrected]recommendations for the diagnosis of Parkinson’s disease[J].Eur J Neurol,2013,20:16-34.
[8] BROOKS D J.Morphological and functional imaging studies on the diagnosis and progression of Parkinson’s disease[J].J Neurol,2000,247(suppl 2):11-18.
[9] SCHRAG A,GOOD C D,MISZKIEL K,et al.Differentiation of atypical parkinsonian syndromes with conventional brain MRI[J].Neurology,2000,54:697-702.
[10] MAHLKNECHT P,HOTTER A,HUSSL A,et al.Significance of MRI in diagnosis and differential diagnosis of Parkinson’s disease[J].Neurodegener Dis,2010,7:300-318.
[11] MEIJER F J,AERTS M B,ABDO W F,et al.Contribution of conventional brain MRI to the differential diagnosis of parkinsonism:a 3-year prospective follow-up study[J].J Neurol,2012,259:929-935.
[12] HAACKEE M,XU Y,CHENG Y C,et al.Susceptibil-ity weighted imaging (SWI)[J].Magn Reson Med,2004,52:612-618.
[13] HAACKE E M,CHENG N Y,HOUSE M J,et al.Imaging iron stores in the brain using magnetic resonance imaging[J].Magn Reson Imaging,2005,23:1-25.
[14] SEHGAL V,DELPROPOSTO Z,HAACKE E M,et al.Clinical applications of neuroimaging with susceptibility-weighted imaging[J].J Magn Reson Imaging,2005,22:439-450.
[15] BERG D,HOCHSTRASSER H.Iron metabolism in Parkinsonian syndromes[J].Mov Disord,2006,21:1 299-1 310.
[16] HAACKE E M,AYAZ M,KHAN A,et al.Establishing a baseline phase behavior inmagnetic resonance imaging to determine normalvs abnormal iron contentin brain[J].J Magn Reson Imaging,2007,26:256-264.
[17] HARDERS L,HOPPK M,WARD H,et al.Mineralization of the deep gray matter with age:a retrospective review with susceptibility weighted MR imaging[J].AJNR Am J Neuroradiol,2008,29:176-183.
[18] FRIEDMAN A,GALAZKA-FRIEDMAN J,KOZIOROWSKI D.Iron as a cause of Parkinson disease:a mythorawell-established hypothesis?[J].Parkinson-ism Relat Disord,2009,15(suppl 3):212-214.
[19] ABBASI N,MOHAJER B,ABBASI S,et al.Relationship between cerebrospinal fluid biomarkers and structural brain network properties in Parkinson'sdisease[J].Mov Disord,2018,33(3):431-439.
[20] GUPTA D,SAINI J,KESAVADAS C,et al.Utility of susceptibility weighted MRI in differentiating Parkin-son’s disease and atypical parkinsonian syndromes[J].Neuroradiology,2010,52:1 087-1 094.
[21] WANG Y,BUTROS S C,SHUAI X,et al.Different iron-deposition patterns of multiple system atrophy with predominant parkinsonism and idiopathetic Parkinson diseases demonstrated by phase-corrected susceptibility-weighted imaging[J].AJNR Am J Neuroradiol,2012,33:266-273.
[22] KRAFT E,TRENKWALDER C,AUER D P.T2*-weighted MRI differentiates multiple system atrophy from Parkinson’s disease[J].Neurology,2002,59:1 256-1 267.
[23] HALLER S,BADOUD S,NGUYEN D,et al.Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibility-weighted imaging(SWI):initial results[J].Eur Radiol,2013,23:12-19.
[24] ZHANG J,ZHANG Y,WANG J,et al.Characterizing iron deposition in Parkinson’s disease using susceptibility weighted imaging:an invivo MR study[J].Brain Res,2010,1 330:124-130.
[25] JIN L,WANG J,JIN H,et al.Nigral iron deposition occurs across motor phenotypes of Parkinson’s disease[J].Eur J Neurol,2012,19:969-976.
[26] BUNZECK N,SINGH-CURRY V,ECKART C,et al.Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson’s disease[J].Parkinsonism Relat Disord,2013,19:1 136-1 142.
[27] WU S F,ZHU Z F,KONG Y,et al.Assessment of cerebral iron content in patients with Parkinson’s disease by the susceptibility-weighted MRI[J].Eur Rev Med Pharmacol Sci,2014,18:2 605-2 608.
[28] ULLA M,BONNY J M,OUCHCHANE L,et al.Is R2* a new MRI biomarker for the progression of Parkinson’s disease? A longitudinal follow-up[J].PLoS One,2013,8:e57904.
[29] WIELER M,GEE M,MARTIN W R.Longitudinal mid brain changes in early Parkinson’s disease:iron content estimated from R2*/MRI[J].Parkinsonism Relat Disord,2015,21:179-183.
[30] PFEFFERBAUM A,ADALSTEINSSON E,ROHLFING T,et al.MRI estimates of brain iron concentration innormal aging:comparison of field-dependent (FDRI)and phase (SWI) methods[J].NeuroImage,2009,47:493-500.
[31] LOANE C,WU K,BAIN P,et al.Serotonergic loss in motor circuitries correlates with severity of action-postural tremor in PD[J].Neurology,2013,80:1 850-1 855.
[32] DEXTER D T,STATTON S A,WHITMORE C,et al.Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration[J].J Neural Transm (Vienna),2011,118:223-231.
[33] DEVOS D,MOREAU C,DEVEDJIAN J C,et al.Targeting chelatable iron as a therapeutic modality in Parkinson’sdisease[J].Antioxid Redox Signal,2014,21:195-210.
[34] HAACKE E M,MITTAL S,WU Z,et al.Suscepti-bility-weighted imaging:technical aspects and clinical applications,part 1[J].AJNR Am J Neuroradiol,2009,30:19-30.
[35] SASAKI M,SHIBATA E,TOHYAMA K,et al.Monoamineneurons in the human brain stem:anatomy,magnetic resonance imaging findings,and clinical implications[J].NeuroReport,2008,19:1 649-1 654.
[36] OIKAWA H,SASAKI M,TAMAKAWA Y,et al.The substantia nigra in Parkinson disease:protondensity-weighted spin-echo and fast short inversion time inversion-recovery MR findings[J].AJNR Am J Neuroradiol,2002,23:1 747-1 756.
[37] SASAKI M,SHIBATA E,TOHYAMA K,et al.Neuromelan in magnetic resonance imaging of locus ceruleus and substantianigra in Parkinson’s disease[J].NeuroReport,2006,17:1 215-1 218.
[38] SCHWARZ S T,RITTMAN T,GONTU V,et al.T1-weighted MRI shows stage-dependent substantianigra signal loss in Parkinson’s disease[J].Mov Disord,2011,26:1 633-1 638.
[39] LANGLEY J,HUDDLESTON D E,CHEN X,et al.A multicontrast approach for comprehensive imaging of substantia nigra[J].NeuroImage,2015,112:7-13.
[40] BARBOSA J H,SANTOS A C,TUMAS V,et al.Quantifying brain iron deposition in patients with Parkinson’s diseaseusing quantitative susceptibility mapping,R2 andR2[J].Magn Reson Imaging,2015,33:559-565.
[41] CHAN L L,NG K M,RUMPEL H,et al.Transcallosal diffusion tensor abnormalities in predominant gait disorder Parkinsonism[J].Parkinsonism Relat Disord,2014,20:53-59.
[42] ANTONINI A,VITALE C,BARONE P,et al.The relationship between cerebralvascular disease and Parkinsonism:the VADO study[J].Parkinsonism Relat Disord,2012,18:775-780.
[43] ARAMAKI Y,HARUNO M,OSU R,et al.Movement initiation-locked activity of the anterior putamen predicts future movement instability in periodicbimanual movement[J].J Neurosci,2011,31:9 819-9 823.
[44] HWANG I,SOHN C H,KANG K M,et al.Differentiation of Parkinsonism predominant multiple system atrophy from idiopathic Parkinson diseaseusing 3T susceptibility-weighted MR imaging,focusing on putaminal change and lesion asymmetry[J].AJNR Am J Neuroradiol,2015,36:2 227-2 234.
[45] MEIJER F J,VAN RUMUND A,FASEN B A,et al.Susceptibility-weighted imaging improves the diagnostic accuracy of 3T brain MRI in the workup of Parkinsonism[J].Am J Neuroradiol,2015,36:454-460.
[46] 魏文石,任文磊.帕金森病α突触核蛋白的研究现状及展望[J].中华老年心脑血管病杂志,2019,21(2):113-114.
[47] 王倩,陈卓友.肠道微生态与帕金森病的相关性研究进展[J].医学综述,2019,25(2):242-246.
[48] 郭丽丽,王咏,王莹,等.SNCA和GBA在帕金森病中相互作用研究进展[J].基础医学与临床,2019,39(1):97-101.
[49] 田荆华,朱明慧,张争辉,于兰.帕金森病猴模型生化指标及肾上腺的改变[J].中国临床解剖学杂志,2019,37(1):51-54,59.
[50] 陈晓婷,徐思敏,崔理立,等.SIRT1与帕金森病[J].海南医学,2018,29(6):815-817.
[51] 田小军,郝洁,邢红霞,等.SNCA基因多态性与PD患者发病和临床特征的相关性分析[J].实验与检验医学,2018,36(2):159-161.
[52] 韩婧洋,张晓娜,房金妮,等.P2X4对帕金森病模型大鼠黑质中α突触核蛋白表达的影响[J].精准医学杂志,2018,33(1):62-66.
[53] 王春燕,冯凡,巩企霞,等.利福平通过促进自噬保护帕金森病模型细胞损伤[J].江苏大学学报(医学版),2018,28(6):483-488.
[54] LEE A,GILBERT R M.Epidemiology of Parkinson Disease[J].Neurol Clin,2016,34(4):955-965.
[55] ABBAS M M,XU Z,TAN L C S.Epidemiology of Parkinson's Disease-East Versus West[J].Mov Disord Clin Pract,2018,5(1):14-28.
[56] PARNETTI L,CICOGNOLA C,EUSEBI P,et al.Value of cerebrospinal fluid alpha-synuclein species as biomarker in Parkinson's diagnosis and prognosis[J]Biomark Med,2016,10(1):35-49.
[57] QIN X Y,ZHANG S P,CAO C,et al.Aberrations in Peripheral Inflammatory Cytokine Levels in Parkinson Disease:A Systematic Review and Meta-analysis[J].JAMA Neurol,2016,73(11):1 316-1 324.
[58] KANG J H,IRWIN D J,CHEN-PLOTKIN A S,et al.Association of cerebrospinal fluid beta-amyloid 1-42,T-tau,P-tau181,and alpha-synuclein levels with clinical features of drug-naive patients with early Parkinson disease[J].JAMA Neurol,2013,70(10):1 277-1 287.
[59] 庄镇裕,叶梓良,林楚曼,等.α-突触核蛋白转运与帕金森病关系的研究进展[J].实用医学杂志,2018,34(23):4 008-4 010.
[60] 彭伟,张立娟,张倩,等.天麻钩藤饮对帕金森病模型大鼠纹状体α-突触核蛋白含量及自噬相关蛋白Beclin1、LC3B表达的影响[J].中医杂志,2018,59(14):1 228-1 231.
[61] 赵淼,刘讷鸥,郑瑞茂.帕金森病治疗新策略-抗氧化剂疗法[J].生理科学进展,2017,48(6):440.
[62] PARNETTI L,FAROTTI L,EUSEBI P,et al.Differential role of CSF alpha-synuclein species,tau,and Abeta42 in Parkinson's Disease[J].Front Aging Neurosci,2014,6(1):53.
[63] MOUSSAUD S,JONES D R,MOUSSAUD-LAMODIERE E L,et al.Alpha-synuclein and tau:teammates in neurodegeneration[J].Mol Neurodegener,2014,9(1):43.
[64] 钟佳宏,汪海涛,徐江平.α-突触核蛋白与帕金森病[J].神经药理学报,2017,7(2):51-52.
[65] 梁建庆.帕金森病的发病机制、诊断标准及治疗策略[J].解放军医学杂志,2018,43(8):631-635.
[66] 刘梦茹,宫晓丽,王乐,等.脂多糖对肠道α-突触核蛋白表达的影响[J].首都医科大学学报,2018,39(4):557-562.
[57] 吴忧,梁顺利,徐彬,等.姜黄素保护帕金森病多巴胺能神经元的机制研究[J].浙江大学学报(医学版),2018,47(5):480-486.
[68] 何建成.自噬与帕金森病及中药干预研究[J].医学研究杂志,2017,46(6):1-4.
[69] 何屹,余刚,郑鹏,等.肠脑轴与帕金森病发病机制研究进展[J].中国全科医学,2018,21(9):1 020-1 023.
[70] 熊中奎,胡雅儿.α-突触核蛋白的生物学功能及其在帕金森病中的作用[J].中国病理生理杂志,2010,26(9):1 855-1 858.
[71] 王俊,宋宁,徐华敏,等.帕金森病中铁与Alpha-突触核蛋白的相互作用[J].生理科学进展,2015,46(3):180-184.
[72] CONSTANTINIDES V C,PARASKEVAS G P,EMMANOUILIDOU E,et al.CSF biomarkers β-amyloid,tau proteins and a-synuclein in the differential diagnosis of Parkinson-plus syndromes[J].J Neurol Sci,2017,(1),382:91-95.
[73] BENGOA-VERGNIORY N,ROBERT R F,WADE-MARTINS R,et al.Alpha-synuclein oligomers:a new hope[J].Acta Neuropathologica,2017,134(6),819-838.
[74] COMPTA Y,PARKKINEN L,KEMPSTER P,et al.The significance of α-synuclein,amyloid-β and tau pathologies in Parkinson's disease progression and related dementia[J].Neurodegener Dis,2013,13(2/3):154-156.
[75] 宗国才,康文岩,刘军.帕金森病唾液α-突触核蛋白与非运动症状的相关性研究[J].临床内科杂志,2017,34(3):176-178.
[76] 吴忧,梁顺利,张荣博,等.动力蛋白在帕金森病小鼠发病中的作用及机制[J].华中科技大学学报(医学版),2018,47(2):161-166.
[77] 汤镇维,熊鲲.热休克蛋白调控α-突触核蛋白在帕金森病治疗中的研究进展[J].解剖学杂志,2017,40(6):747-751.
[78] 何一昕,王雪晶,丁雪冰,等.突触核蛋白病中α-syn聚集及播散的机制研究[J].中国实用神经疾病杂志,2016,19(4):77-79.
[79] 王少君,彭国光.帕金森病重要的发病机制:α-突触核蛋白异常聚集[J].中华医学杂志,2008,88(1):65-68.
[80] 陈东万,王叶冉,曹红元,等.帕金森病患者血浆α-synuclein、Aβ及tau蛋白变化特点[J].现代生物医学进展,2015,15(33):6 472-6 475.
(收稿2018-11-26)
本文责编:夏保军
本文引用信息:焦淑洁,刘亚玲,朱红灿,滕军放.脑脊液α-突触核蛋白和SWI在早期帕金森病诊断中的价值[J].中国实用神经疾病杂志,2019,22(3):246-252.DOI:10.12083/SYSJ.2019.03.048
Reference information:JIAO Shujie,LIU Yaling,ZHU Hongcan,TENG Junfang.The effect of α-synuclein in cerebrospinal fluid and SWI in early Parkinson’s disease[J].Chinese Journal of Practical Nervous Diseases,2019,22(3):246-252.DOI:10.12083/SYSJ.2019.03.048